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We introduce a novel technique—lean complementarity—that eliminates any waste of computational resources occurring during
the pursuing of complementarity. First, it requires the solution of the scalar potential formulation only, since flux equilibration is
performed explicitly, i.e. without solving any linear system. Second, the systems arising during adaptive mesh refinement are solved
inexactly on purpose, by stopping the iterations of the iterative solver when the algebraic error gets negligible with respect to the
estimated discretization error. Discretization error is estimated with complementarity, whereas the algebraic error is computed very
accurately with a novel and cheap technique.

Index Terms—Poisson problem, finite elements (FEM), finite integration technique (FIT), fully computable error bounds, hypercircle
method, one stroke complementarity, explicit flux equilibration, adaptive stopping criterion

I. INTRODUCTION

COMPLEMENTARITY provides, at least for Poisson-like
problems, rigorous error bounds for system energy [1]

and a robust error estimator [2] for mesh adaptivity. Yet,
exploiting complementarity is costly as it requires to solve
the problem two times, for example with the scalar potential
Finite Element formulation and any of its complementary or
complementary-dual [3] counterparts. One stroke complemen-
tarity [4] shows that the irrotational electric field and the
solenoidal current density of a stationary conduction paradigm
problem not necessarily have to be the ones produced by a
pair of complementary formulations. Those ones yield optimal
bounds, but sub-optimal bounds may be found by solving least
squares problems in each dual element [3] starting from a
solenoidal current. Still, a solenoidal current is obtained by
complementary formulations which are quite costly.

One aim of this paper is to devise lean techniques to achieve
one-stroke complementarity also with the scalar potential for-
mulation V . This formulation provides an irrotational electric
field, whereas the current Ĩ is defined on the dual complex K̃
and is there conservative [5], i.e. D̃Ĩ = 0, where D̃ = −GT

and G is the edge-node incidence matrix. The question is
whether it is possible to construct, by local manipulations
only, a solenoidal current I defined on the primal complex
that represents a current density as close as possible to the one
computed by the V formulation. We remark that methods based
on (Galerkin or least squares) projections or discrete Hodge
decomposition are not suitable as they require the solution of
a global system.

A technique to construct I is called flux equilibration by
numerical analysts. Tight bounds are obtained in [6], [7] by
solving non-linear programming problems and local systems.
The implementation is complicated, that is why less accurate
techniques based on spanning trees [8] have been proposed
instead. An original technique introduced in [9] exploits the
conservativity of Ĩ. Each dual volume is tessellated with a new
(finer) simplicial mesh and the local corrections are found by
trying to “interpolate inside such cells while enforcing current
conservation” [9].

II. LEAN COMPLEMENTARITY

Let us call υ the potential which is the exact solution of
the problem, V the exact solution of the discrete problem and
V(k) the solution of the discrete problem after the kth iteration
of the linear iterative solver. The total error e = υ − V(k)

can be clearly written as the sum of the discretization error
ed = υ − V and the algebraic error at the kth iteration
e
(k)
a = V −V(k), which vanishes if the system is solved ex-

actly. We have neglected the so-called oscillation error term by
assuming sources and boundary conditions piecewise uniform
in each element. The stopping criterion for iterative solvers
used in lean complementarity is |||e(k)a ||| < d |||ed|||, where
we set d = 0.01, |||e||| =

√
eTKe is the standard energy norm

and K is the stiffness matrix. The proposed stopping criterion
attempts to balance the two sources of error, as insisting in
reducing |||e(k)a ||| down to zero would not improve the total
error significantly.

Lean complementarity requires to face two challenges. First,
one has to devise a fast and accurate technique to evaluate the
algebraic error. Second, conservativity of Ĩ does not hold at a
given iteration of the linear solver, which means that one has
to develop a novel flux equilibration technique since state of
the art methods rely on current conservation.

A. Effective evaluation of the algebraic error

The stopping criterion shouldn’t be defined—as happens in
the usual practice—with the Euclidean norm of the residual
r(k) = b − KV(k), where b is the right-hand side of the
system, or the relative residual ||r(k)||/||r(0)||. The reason is
clear after looking at the relationship between e

(k)
a and r(k)

e(k)a = V −V(k) = K−1(b−KV(k)) = K−1 r(k). (1)

This paper introduces a computationally inexpensive tech-
nique to obtain a remarkably precise estimation of e

(k)
a . Let

us run the iterative solver for additional ν iterations obtaining
V(k+ν), where ν is such that r(k+ν) < c r(k) and c � 1
(we set c = 0.05). Then, let us consider the difference of the
systems K(V(k+ν)−V(k)) = r(k)−r(k+ν) at these two stages.
Comparing this result with (1), e(k)a ≈ V(k+ν) −V(k) holds.
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Fig. 1. (a) Tetrahedron v. Current If associated with face f (highlighted in
the picture). (b) v is partitioned in four dual volume portions. (c) If over face
f is obtained as I1f + I2f + I3f .

B. Explicit flux equilibration

We use complementarity to estimate |||e||| through a novel
and fast flux equilibration technique. Let us consider an ele-
ment v of the mesh, see Fig. 1a. Let us also define the portion
τvn of dual volume ṽ (dual to node n) inside the element v as
τvn = v ∩ ṽ, see Fig. 1b.

The idea is to construct a current that is solenoidal in each
portion of dual volume. If so, it is solenoidal also in the
initial tetrahedral mesh, as the current continuity law on v is a
linear combination of continuity laws on its four dual volume
portions. Then I is constructed by assembling exactly three
contributions for each face, see Fig. 1c.

To obtain a solenoidal current in dual volume portions one
may solve a Neumann problem in ṽ with a current conservative
formulation with obvious advantages w.r.t. [6], [7] and [9].
Local systems are small (30 × 30 on average) and may be
solved in parallel. Yet, their solution requires an unacceptable
amount of time for 3d problems. Moreover, one needs to
construct globally edges, faces and their incidences, which are
not needed in the V formulation.

We introduce in this paper an explicit technique for flux
equilibration that does not require any system solution, even
local ones. The key idea is that ṽ is a polyhedron whose (flat)
faces are the portions of dual faces f̃ve = f̃ ∩ v, where f̃
is the dual face dual to the primal edge e. Then, a uniform
current density J inside ṽ is found by using face basis functions
devised for star-shaped polyhedral elements [10]. What is also
remarkable is that J can be found by assembling contributions
element-wise. Finally, the current on one thirds of primal faces
is found by integrating J over them. How to treat nodes that
lie on the boundary or that are surrounded by more than one
material will be described in detail in the full paper.

III. NUMERICAL EXPERIMENTS

Lean complementarity has been implemented in the CDICE
code [3] and the novel stopping criterion in the AGMG
algebraic multigrid solver [11]. We present the results on a
benchmark consisting of a square resistor, see [3]. The effec-
tiveness of lean complementarity is striking. Both algebraic
and total errors are estimated very accurately, as Fig. 2 shows.
Moreover, the iterative solver is stopped at iteration 4, whereas
the classical stopping criterion (relative residual set to 1e-8)
performs 12 iterations. It turns out that lean complementarity
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Fig. 2. Continuous lines represent the exact values of |||e(k)a |||2, |||ed|||2
and |||e|||2 in logarithmic scale. Bigger marks represents the same quantities
estimated by lean complementarity at iterations 2 and 4. The residuals ||r(k)||
and the relative ones are also shown. The mesh consists of 889,350 tetrahedra
and 157,239 nodes.
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Fig. 3. H+ V exploits complementarity in the standard way, i.e. by solving
with both V and mixed-hybrid H formulations. One stroke complementarity
[4], [3] saves the V solution. Lean complementarity is even faster than the V
formulation alone even though it exploits complementarity.

is even faster w.r.t. the V formulation, see Fig. 3, even though
the latter cannot exploit complementarity.
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